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ABSTRACT 

Let X1 . . . . .  X, be independent random variables, let F. be the distribution 
function of X~ (1 <-- i -_< n) and let X~. <= • • - _<- X.. be the corresponding order 
statistics. We consider the statistics Xk., where k=k(n), k/n--~,l and 
n - k ~ ~. Under some additional restrictions concerning the behaviour of the 
sequences {a. >0, b., k(n), F,} we characterize the class of all distribution 
functions H such that 

Prob{(X~. - b.)/a, < x)}---, H. 

1. Introduction 

Let  X1 . . . . .  X.  be  i n d e p e n d e n t  and  ident ica l ly  d i s t r ibu ted  r a n d o m  var iab les  

and  let  X~. _<-... =<X,. be  the  co r r e spond ing  o r d e r  statist ics.  F o r  every  k 

(1 =< k _-< n )  let  F~, d e n o t e  the  d i s t r ibu t ion  funct ion  (df) of Xk.. 

Much  work  has been  done  on  the a sympto t i c  b e h a v i o u r  of the  stat is t ics  Xk., 

when  no rma l i zed  as n ~ oo. The  s tudy of the  max imal  t e rm X, ,  was s t a r t ed  by 

M. Fr6che t  [3], and  def ini t ive resul ts  were  o b t a i n e d  by  B. V. G n e d e n k o  [5]. The  

class of the  we l l -known  e x t r e m e  va lue  l imit  laws of G n e d e n k o  will be  d e n o t e d  

he re  by  A.  

N. V. Smi rnov  [16] cons ide red  the  t e rm Xk., where  k = k (n )  is a funct ion 

of n. H e  inves t iga ted  the  poss ib le  p r o p e r  l imits  of a s equence  of the  form 

F~. (a,x + b,), u n d e r  the  cond i t ion  tha t  

(1.1) k /n  --~ A 

and a ,  > 0, b. a re  numer ica l  sequences .  A sequence  of t e rms  Xk, was ca l led  by 

Smirnov  a s equence  of  central t e rms ,  if 0 < A < 1 and  extreme t e rms ,  if A = 0 or  
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h = 1. Under some additional assumption on the sequence k (n), Smirnov found 

the class of all possible limits for the central terms, but his investigation of the 

extreme terms was restricted to the cases when k = const (the left extreme terms 

with A = 0) or, what is essentially the same, when p = n - k = const (the right 

extreme terms with h -- 1). Denoting this latter class by Ap, we can formulate 

Smirnov's result as follows: 

The df H belongs to Ap if and only if it has the form 

p - 1  

(1.2) H(x) = A(x) ~ (-logA(x))'/s!, 
s = 0  

where A(x) is any df of Gnedenko 's  class A. 

The study of the limits for the extreme terms in the remaining case, when 

(1.3) k---,oo and p=n-k---~oo, 

was initiated by D. M. Chibisov [2]. Under some rather strong restrictions on the 

sequence k(n) Chibisov proved that a df H can be a limit in the case (1.3) if and 

only if it has the form 

H(x ) = qb( - log I log A (x)l), 

where • is the standard normal df and A (x) is any df of the class A. 

Chibisov's class was obtained in [13] under less restrictive conditions. But the 

best results in this direction belong to A. A. Baikema and L. de Haan [1]. They 

developed a general theory of limit laws for order statistics in case (1.3). In 

particular they obtained Chibisov's class under the following condition concern- 

ing the k(n):  

k(n + 1 ) -  k(n) = o(min{X/k(n), X/n - k(n)}). 

Moreover,  they proved that if, apart from (1.1), no other restriction is imposed 

on k(n) ,  then for a given h (0 <_- h -<_ 1) any df may be a limit law for some Xkn. 

It seems to be of interest (cf. [8], p. 183) to study the asymptotic behaviour of 

the extreme order statistics in the more general case, when the underlying 

independent random variables X, . . . .  X, are not necessarily identically distri- 

buted. 

Let F~ be the df of X, and Fk, - -  as above - -  the df of the statistics Xk,. For 

every df H we introduce the notation 

(1.4) _H = inf{x: H(x) > 0}, /~ = sup{x: H(x) < 1}. 
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A non-trivial extension of the class A is the class G of all df's H such that 

(1.5) F,,,, (a,,x + b,,)--* H(x), 

under the additional condition that for every x > _/2/ 

(1.6) min F~(a.x + b.)---~ 1. 

The class G was studied in [7] and [9-12]. We proved that the df H belongs to G 

if and only if log H is a concave function or if ~ < o ~  and the function 

log H( /4  - e-~ ) is concave. 

Let us denote by Gp a similar extension of Smirnov's class Ap. It was proved in 

[15] that H belongs to Gp if and only if it can be presented by Smirnov's formula 

(1.2), where A(x) is replaced by G(x), i.e., any df of the class G. 

A comprehensive view of the evolution of the subject is given by J. Galambos 

in his monograph [4]. 

It is the purpose of the present paper to consider the right extreme terms in 

case (1.3), where 

(1.7) p/n --~0 

and the underlying independent random variables X~ . . . . .  X, are not necessarily 

identically distributed. 
In order to achieve an exact description of a class of possible limit df's in our 

more general situation, we are compelled to impose additional restrictions 

besides the condition of Balkema-de Haan. Denote 

(1.S) ]/ [" 12F, u,= ~'~F~-n X/p(n)+X/p(n), f " - n  ,=, 
i = l  

and let us introduce the following 

DEFINITION 1.1. Let S be the class of all proper df's H (i.e. H < H), which 

have the following property: 

There exists a sequence of independent random variables X, with correspond- 

ing df's F.,  numerical sequences a, > 0, b. and positive integers k(n) such that 

in addition to (1.3) and (1.5)-(1.7), the following conditions are satisfied: 

(a) The condition of Balkema-de Haan, which in our notation can be written 

in the form 

(1.9) "X/p(n + 1 ) -  "X/p(n)-~O. 
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(b) For every positive integer n and r and every x < f ,  

(1.10) u. ->- u . . . .  

where f~ is defined by (1.8) and (1.4). 

(c) The numerical sequences {an, b,, p(n)} are related in the following way: if 

for some integer-valued function m = re(n) 

(1.11) a.+,~/a.---~ct or (b,÷,~-bn)/a.---~/3, 

where 0 < a < 0% 0 =</3 < oo, then also 

(1.12) p(n + m,)/p(n)--, 1. 

We prove the following 

THEOREM 1.1. The df H belongs to S if and only if it has the form 

(1.13) H = $(u) ,  

where • is the standard normal df and either 

= oo and u is a concave function 

o r  

ISI < oo and the function u (H - e-~ ) is concave. 

We will start with the particular cases an ~- 1 (Section 3) and bn -= 0 (Section 4), 
since these cases seem to be of interest by themselves, and since we intend to 

prove that the class S (when the an and bn are varying simultaneously) is the 

union of the classes, which correspond to the above particular cases. 

Finally, let us point out that here and in the sequel convergence of sequences 

of monotone functions means weak convergence, i.e., convergence at each 

continuity point of the limit function. 

2. Preliminary remarks 

2.1. In our case, when the underlying independent random variables are not 

identically distributed, the df Fkn of the statistics Xk, has quite a complicated 

form: 

/ • / Fkn= I + E E  1-[ (1 /F~- I )  1-IE,  
S=I  i(E(n,s) i=1  

where (n, s) is any set of s integers in {1 . . . . .  n} and the summation E* is over all 
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such sets. We proved [14] a proposition, which may simplify the investigation of 

Xk.. 

THEOREM 2.1 (cf. [16], Theorem 4). Let H be a proper dr, and let (1.3) hold. 

Assume for every x (H. < x < fit) 

F~ (a,x + b,)--+ a = const 

uniformly in i (1 <= i <= n). Put 

(2.1) u, = X/-n ~ F~ - k k ( n  - k)l ''2. 
i = l  

Then relation (1.5) holds if and only if 

(2.2) u, (a,x + b,)-+ u(x) ,  

where the non - decreasing function u is de termined from H by the equation (1.13). 

I f  A = 1, then the expression (2.1) can be rewritten in the form (1.8). 

2.2. By (1.13) the function u in (2.2) is a non-decreasing function, which 
assumes finite or infinite values in ( - 0% oo) and satisfies the conditions u ( - o0) = 

-0% u ( +  oo)= + oo. Such a function will be called here an s-function (sf). 

For every sf we denote 

(2.3) y = i n f { x : u ( x ) > - o o } ,  f i = s u p { x : u ( x ) < + o 0 } .  

An sf wilt be called proper if y < ft. It follows from (1.4), (1.13) and (2.3) that H 

is a proper df if and only if the corresponding sf u is proper, since y = _H, fi = H. 

Using Theorem 2.1, we will investigate in the sequel the possible proper limits 
in (2.2). 

2.3. The notion of type of sf's can be introduced in the same way as was done 

in the domain of df's. The theorems of Khintchine and Gnedenko [6, §10, 

Theorems 1-2] about sequences of df's which converge to a proper type, can be 

extended to sequences of non-decreasing functions (not necessarily sf's), which 

converge to a proper sf. It follows from (1.8) that 

u,+,(x) = A ,u ,  (x) + B, (x), 

where by (1.9) A~ ~ 1 and/3,  (x)---~ 0. Therefore, if relations (1.3), (1.9) and (2.2) 

hold, then 

u,+,(a.x + b,)--+ u(x) .  



6 D. MEJZLER Isr. J. Math. 

Hence, by the theorems mentioned above, we conclude that if u(x) is a proper 

sf, then 

(2.4) a,+l/a.---~ l, (b,+~-b.)/an---~O. 

2.4. In contrast to the df F~, the expression (1.8) makes sense for p(n), which 

are not necessarily integers. The limits in (2.2) do not change if p(n) is replaced 
by any function g(n) such that X/p(n)-Vg(n)---~O. Obviously, each such g(n) 
will satisfy together with p(n) the conditions (1.3), (1.7), (1.9) and (1.12). 

2.5. Let c be any number. Put 

p , (n )  = p(n)+c  X/p(n), ft.--[~=~ F ~ - n ] / ~ / ~ ( n ) +  ~/p(n). 

If for some {a., b,} we have (2.2), then 

ft, (a,x + b,)---~ u(x)+2c. 

2.6. It follows from (1.8) that (1.10) holds if u, (x) < X/p(n). Thus if relation 
(2.2) holds, then for any x < fi we have from some n on a,x + b. < [, and 

therefore, by assumption (1.10), for any positive integer r 

u,+,(a,x + b,)<= u,(a,x + b,). 

2.7. If for some x 

a.+~x +b.+~>=a.x +b,, F,(a,x +b.)--*l 

and for each i fixed F~(a.x + b,)---~ 1, then also (1.6) holds. 

3. The particular case a. ~-1 

DEFINITION 3.1. Let us put a, -~ 1 in the conditions, which define the class S. 

Then we obtain a subset of S that we denote by S*. 

The class S* was studied in [14], where we proved 

THEOaEM 3.1. The df H belongs to S* if and only if it has the form (1.13), 

where u is a proper s[, which has the following property: 
for every [3 > 0 the difference 

(3.1) q~ (x) = u(x) - u(x + [3) 

is a non-decreasing function in ( u_, ~). In other words, u is a concave function. 
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For the sake of completeness, and particularly since our further considerations 

are closely connected to this theorem, we give here a sketch of the proof of the 
sufficiency. 

By Theorem 2.1 it is enough to show that under assumption (3.1) there exists a 

triple {F,, b,, p(n)}, which satisfies all the conditions that appear in Definition 

1.1, where a, = 1 in (1.6) and condition (1.5) is replaced by 

(3.2) u.(x + b.)---~ u(x), 

where u, is given by (1.8). 

It follows from (3.1) that fi = ~. Indeed, assuming fi < ~, let _u < ~ < ~ +/3 < 

rt < a < fi +/3. Then we obtain ~o0 (~)>  q~0 (77) = - ~ ,  which is impossible, since 

q~o (x) is non-decreasing. Thus u increases continuously in (_u, oo) and has there 

the one-sided derivatives u+(x) = u'(x + 0) and u-(x) = u'(x -0 ) .  These proper- 

ties of u enable us to construct effectively the required triple {F., b,,p(n)}. 
By (1.6) and (1.8), a finite number of terms of this triple may be chosen 

arbitrarily. Therefore, some relations which hold from some n on, can be treated 

here as valid for every n. 

We introduce auxiliary numerical sequences c, and d, by 

(3.3) c, = - n/~/p(n)+ k/p(n), u(d,) = ~/p(n), 

and define 

(3.4) F . = l - p ( n ) + p ( n - 1 ) + k / p ( n ) u . ( x ) - ~ / p ( n - 1 ) u . _ , ( x )  (p(0) = 0), 

where the u. are non-decreasing functions, defined below depending on the 
behaviour of u on the right of _u. However, we always put 

(3.5) u , ( x )=c ,  i f x < 0 ,  u. (x )=X/p(n)  i f x > b . + d . ,  

that implies 

(3.6) F , ( x ) = 0  if x < 0 ,  F , ( x ) = l  i f x > b , + d . .  

By (3.3) 

n 

~, F~ = n - p(n) + ~/p(n) u.. 
i = 1  

Hence, u, (x) has the form (1.8) and it remains to define u, in the interval 

[0, b. + d , ] ,  and the sequences b, and p(n). 
We consider four cases. 
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Case I: u = - oo. 

(3.v) 

If u > - ~  we define 

D. M E J Z L E R  

We define 

u . ( x ) = u ( x - b . )  ifO<=x<-_b,+d,, 

u ( - b , ) = - l o g n ,  p(n)=b, .  

Isr. J. Math. 

(3.8) p(n) = X/-n, b. = ~/-n. 

We may assume y = 0. Moreover, if in addition u (0 + ) > - 0% then by Remark 

2.5 we can assume u (0 + ) = 0. 

Case H: _u =0,  u (O+)=O,  u ' ( O + ) < ~ .  

b.(x - b . )  

u. (x )= u ( x - b . )  

We define the functions u, by 

if 0-<x < b , ,  

ifb,<=x<=b,+d.. 

Case III: u_ =0,  u ( 0 + ) = 0 ,  u ' (0+)=oo .  Let g(x) be a continuous and 

non-increasing function in (0,o o), satisfying g(x)=> u'(x). Let 

(3.9) f(x) = g(x)/u(x), 

(3.10) f(/3. ) = ~/n, 

then 0 </3._, - /3 .  < b. - b. ,, /3. --* O. We define 

u . ( x ) =  f u(/3")+g(/3")(x-/3"-b") i fO- -<x<b"+ /3" '  

u ( x - b . )  if b. +/3. _-<x _-<b. + d . .  

Case IV: y =0,  u ( 0 + ) =  -o~. We take a function g(x) as in the previous 

case and we define the sequence/3, by (3.10), where now, instead of (3.9), the 

function f(x) is given by 

f ( x )  = - u ( x ) g ( x ) .  

The function u. is defined as in the previous case. 

We proved in [14] that by the above determination of the u, the functions F.,  

given by (3.4), are df's and the conditions (1.6) and (3.2) are satisfied. 

It should be noted that the restriction (1.10), which appears in Definition 1.1 of 

the class S, is not needed for the proof of Theorem 3.1, and we introduced this 

restriction keeping in mind the proof of Theorem 1.1. Therefore, it remains to 
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show that our u. satisfy condition (1.10) too. Indeed, in each of the four 

considered cases we have f. = b. + d.. Denote A. (x) = u, ( x ) -  u,.~(x). Since 

)7 =< f,+~, in order to prove (1.10) it is enough to show that 

(3.11) A , ( x ) > 0  i f x < b , + d , .  

However, the validity of (3.11) can be verified, taking into consideration the 

monotonicity of the numerical sequences, which appear in the definition of the 

u°(x). 
For the next section we will need the following 

THEOREM 3.2. Let u(x) be a non-decreasing and concave [unction which 
assumes finite or infinite values in ( - ~, ~) and satisfies the conditions u( - o0) = 
- ~ ,  u ( + ~ ) =  l < ~ .  There exists a triple {F.,b, ,p(n)} which satisfies all the 
conditions that appear in the definition o[ the class S*. 

Without loss of generality we can assume (Remark 2.5) that l > 0. PROOF. 

Denote 

(3.12) 

Denote 

u = i n f { x : u ( x ) > - ~ } ,  t ] , = s u p { x : u ( x ) < l } .  

We define the numerical sequences {b,,p(n)} by (3.7) if _u = - ~  and by (3.8) if 

u > - ~ .  The df's F, are defined by (3.4), where u. (x) are non-decreasing and 

continuous for x # 0. The u, (x) will be specified later. However, we will always 

have (3.5) where the sequence {c,} is given by (3.3) and the {d,} will be also 

defined later. Condition (3.5) implies (3.6) and it remains to define the u. (x) in 

the interval [0, b, + d. ] only. In order to define the u., we have to consider the 
various ways the u (x) can behave on the left of fi~ under the various assumptions 

concerning the behaviour of u(x) on the right of _u, i.e., the cases I-IV, which 

were considered in the proof of Theorem 3.1. 

We will consider a few cases under assumption I, i.e., when u = - ~ .  

Fortunately, the passage from I to II-IV is very simple. 

Let us consider in detail the case 

(A; I): fi~ = ~; _u = - ~. Since u is concave, there exists by (3.7) a constant 

c > 0 such that 

n + l  
b , = c l o g n ,  O<b ,+l -b .  < c l o g - - < c / n .  

n 

y. = inf{x" u'(x)>= 1/X/p(n)} = sup{x: u'(x)<= 1/k/p(n)}. 
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In our case u'(x)---~0, when x-- -~ .  Therefore 

(3.13) 3'. ---> 3'.-1 --~m 

and 

(3.14) 

Denote 

u-(3".) = u'(3". - O) >-_ 1 /~ /p(n) ,  u+(3'.) = u' (y .  +0)<= 1 / V p ( n ) .  

d. = 3'. + p ( n ) - u ( 3 " . ) V p ( n ) .  

- o o < O < b . _ , + 7 . _ ~ < b . _ , + d .  ~ < b . + y . < b . + d . < o o .  

Let us assume first (3.17.a) and let us examine the F, in the corresponding 

intervals. 

If 0 <= x -<_ b. + 7., then F, can be presented in the form 

F. = 1 - p ( n )  + p (n  - 1)+ ~ / p ( n ) [ u ( x  - b . ) -  u (x  - b._,)] 

+ [ ~ v / ~ )  - ~ / p ( n  - 1)]u(x - b._,). 

Since u (x )  is concave, the difference u(x  - b . ) -  u (x  - b. ~), and consequentl 3 

F. (x), increases in the interval under consideration. 

If b . _ , + y .  ,<x<-_b .  + y . .  then 

(3.17.a) 

o r  

(3.17.b) 

We can assume 

(3.15) d, > d,--1 ~ ~, 

since u ( 3 " , ) V p ( n )  - u(3"._l)~/p(n - 1) < l ( V p ( n )  - V p ( n  - 1)). 

Finally, we define the u, (x) by 

(3.16) u . ( x ) = t  u ( x - b " )  i f O < = x < b " + 3 " '  

( ( x - b , - 3 " , ) / V p ( n ) + u ( 3 " . )  i f b . + 3 " , < x < = b , + d , .  

Besides condition (3.13), the difference (3', - %-0  is unrestricted. Therefore, 

taking into account (3.7), (3.13) and (3.15), the "critical points" of the expression 

(3.4) of F. can be ordered in one of the two following ways: 

- ~ < O < b . _ ,  + y.-~ < b .  +3". < b._~ + d._, < b. + d. < oo 
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F~ = 1 - p ( n )  + p (n  - 1) + ~ / p ( n ) u ( x  - b,,) 

- [ x  - b . - 1 -  u (Y.-1)+ u ( ' ) / n _ l ) ~ / p ( n  - 1)]. 

Hence by (3.14) 

F',(x - 0 )  = "X /p (n )u - (x  - b , ) -  1 >= ~/p(n)u ' ( ' ) , ,  - 0 ) -  1 >-0 

and F. does not decrease. The monotonicity of F. in the other intervals is 

obvious. The F, are continuous for x #  0 and we conclude that Fo does not 

decrease in (0,w). 

It follows from (3.12) and (3.16) that 

(3.18) Fo (0 + )--> 1. 

Thus we can assume that F, ( x ) >  0 for x > 0 and by (3.6) we obtain that F, are 

df's. 

By Remark 2.7, relation (3.18) also implies the validity of (1.6). Now, for any x 

we have from some n on 0 < x + b, < 3'. + b. and by (3.16) we have from some n 

(3.19) u . ( x  + b, )  = u(x) .  

It remains to prove that our u. satisfy condition (3.11) too. Obviously, 

A . ( x ) > O i f  x < b , + ~ , . .  If b . + y . < x < = b , + , + % + l ,  then 

A.  (x )  = (x - b. - y . ) / ' X / p ( n ) +  u ( y , ) -  u (x  - b.). 

It is easy to observe that 

A , ( x ) > 0  i f b . + y , , < = x < = b , , + , + y . .  

On the other hand, in the interval [b.+t + 7., b.+t + 7.+1] we have by (3.14) 

A'(x +0)  = 1 / X / p ( n ) -  u+(x - b.+~) >- _ 1 / X / p ( n i -  u ' (7 ,  +0)>= 0. 

Hence we conclude that A. (x)=>0 if x = b,+~ + y.+l. 

Finally, since A'.(x)> 0 for b.+, + y.+l < x < b. + d., we obtain the validity of 

(3.11). 

If we assume (3.17.b) we argue in a similar way. 

If tit < 0% we may assume ti~ = 7 > 0. 

(B; I): 0 < t i t = 7 < o %  u ' ( y - 0 ) = 0 ;  u = - o o .  We define the numerical 

sequences y,, d, and the functions u, as in the previous case. However,  now we 

will have 
V. I --<- ~/- --> % 
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In the present  case we have (3.17.a) and the a rgumen t  is the same  as in case 

(A; I). Now,  if x < y, then f rom some  n on we have  0 < x + b. < b. + 3'. and by 

(3.16) we obta in  (3.19). If x > y, then  f rom some  n on b. + 3'. < x + b. < b. + d. 

and by (3.16) 

u. (x + b.) = (x - 7.)/N/p(n) + u(y . ) - -*  u(y) = I. 

(C; I): 0 <  a, = 3 , < ~ ,  u ' ( 3 , - 0 ) > 0 ;  _u = - ~ .  

l u(x - b . )  

u.(x) = L(x  - b. - 3,)/\/p(n)+ l 

where  d. = 3, + p ( n ) -  lX/p(n). 
Let  us point  out  that  for  b. , + 3, < x =< b. + 3, we have 

We  define 

i f O = < x = < b . + %  

if b . + y < x = < b . + d . ,  

F'.(x - 0 )  = ~/p(n)u-(x  - b . ) -  1 >= k/p(n)u'(3" - 0 ) -  1 

and F.(x) increases  f rom some  n on, since u ' ( y - 0 ) > 0 .  

If u > - ~ ,  we can assume one of the cases I I - I V  and we obta in  the definit ion 

of u. (x)  by combin ing  our  p resen t  formulas  with the de te rmina t ion  of the u. (x)  

on the right of _u, as was done  in the p roof  of T h e o r e m  3.1. 

Thus,  in case (A;  I I )  we define 

( b . ( x - b . )  if O<- x <=b., 
u . ( x ) =  l u ( x - b . )  if b . < x < = b . + y . ,  

( ( x - b . - y . ) / ~ / p ( n ) + u ( 3 " . )  if b. +y.  <x<-b .  +d . ;  

and in the case (A; I I I )  or  (A; IV):  

{ u ( [ 3 . ) + g ( ~ . ) ( x - ~ . - b . )  if 0=< x <-- b. + /3 . ,  

u . ( x )  = u ( x - b . )  if b .+[3 .<x<=b.+%,  
( x - b . - y . ) / N / p ( n ) + u ( y . )  if b. +y .  <x<=b. +d.. 

In a similar way we ex tend  the definit ion of the u. (x)  in cases (B) and (C). 

Finally, there  remains  the case 

(D): t T , = _ u = 0 .  We  have 

if x < 0 ,  

if x > 0 .  

W e  define the u. (x)  by 
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f b . ( x - b . )  
u . ( x )  = 

t (x - b . ) / k /p (n )+  l 

where d. = p(n). 

This completes the proof. 

if 0 = x = < b . ,  

if b, <x<=b. +d, ,  

4. The particular case b. -= 0 

LEMMA 4.1. Let 

(4.1) u, ( a,x )--* u(x ), 

where u. is given by (1.8) and u(x)  is a proper s[. Let 

(4.2) 

for every x > y. Then either 

o r  

PROOF. Assume that for 

min F~ ( a.x )---~ 1 

a. --. ~ and y >= O 

a. ---~ O and fi_-<0. 

some subsequence a.,---~ a, where 0 =  < a-<_ ~. If 

0 < a < ~, then by the theorems of Khintchine and Gnedenko  (Remark  2.3) we 

also have u,,(ax)--* u(x),  and for every i and x > u, F~ (ax) = 1. Thus by (4.1) we 

conclude that u ( x ) =  ~ for x > u. Hence y = ti which is impossible, since u is a 

proper  sf. 

Let a = ~ .  Assuming _u<0, we shall have F~(a,,x)---~0 for every i and 

y < x < 0, which contradicts (4.2). 

If a = 0, then by (4.2) we have F. (0 + ) =  1 for every i and consequently 

u . , (a . , x )=Vp(n ' ) - -*~  for x > 0 ,  i.e. ~ =<0. 

Obviously, the coexistence of both partial limits (0 and ~) is excluded by the 

assumption y < ft. 

Now, taking into account Theorem 2.1, we obtain that if the df H belongs to S 

with b. -= 0, then either 

(4.3) a.  ~ ~ and _/-/=> 0 

or  

(4.4) a. ~ 0 and /-t =< 0. 
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DEFINITION 4.1. Let  us put  b, - 0 in the condit ions,  which define the class S. 

T h e n  we obta in  a subclass of S, which is deno ted  here  by S + if we have  (4.3) and 

by S -  if we have  (4.4). 

The  classes S + and S -  are  not  closed under  translat ions.  W e  deno te  by S+ and 

the cor r responding  ex tended  classes, that  contain all the types that  are 

r ep resen ted  in S + and S- ,  respectively.  

4.1. The classes S + and S+ 

THEOREM 4.1. The df H belongs to S + if and only if it has the form (1.13), 

where u is a proper sf, having the following properties : y ->_- O, and for every a > 1 

the difference 

(4.5) ~ (x)  = u ( x ) -  u (ax )  

is a non-decreasing function in (u, oo). 

Sufficiency. It follows f rom (4.5) that  t~ = oo. Indeed ,  assuming ~ < 0% PROOF. 

let 

0 - < _ _ u < ~ < r / < f i ,  l < ~ /'q < a < ~ / ~. 

Then  we obta in  q~, (~) > q~ (r/) = - oo, which is impossible ,  since ~ < 7- D e n o t e  

(4.6) v(x)  = u(e~). 

Obviously ,  v ( + oo) = u ( + oo) = + oo. If y > 0, then  v (x)  = - oo for  x < log _u. If 

_u = 0, then v ( - oo) = u (0 + ). But  if _u = 0, then  necessari ly u (0 + ) = - oo. 

Indeed ,  the assumpt ion  I u (0 + )l < oo implies q~ (0 + ) = 0 and consequent ly  

q~,(x) = 0 for  every  x > 0 ,  since ax > x and q~ (x)  is non-decreas ing.  H e n c e  

u ( x ) = c o n s t  for x > 0 ,  which is impossible ,  since u is an sf. Thus  we have  

p roved  that  v(x)  is a p rope r  sf. 

Now,  let us subst i tute in (4.5) e x instead of x and put  a = e ~. Then  by (4.6) the 

difference v ( x ) - v ( x  + ~)  does  not decrease .  Hence ,  by T h e o r e m  3.1 the df 

H = ~ ( v )  be longs  to S* and there  exists a triple {F,, b,, p(n)}  which satisfies all 

the condi t ions that  appea r  in Defini t ion 3.1. In par t icular  we have  

(4.8) min ~ ( x  + b , ) - - ~ l  for  x >_v, 
l~i~n 

where  b , - -*  oo. Let  us define 
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F ~ ( x ) = ~ ( l o g x )  for x >0 ,  a, =exp(b,) .  

Then putting log x instead of x in (4.7)-(4.8) we obtain (4.1)-(4.3) and therefore 

H = ~ (u )  belongs to S +. 

Necessity. By Remark (2.3) we have (2.4). Since a,---~o% there exists for 

every ~ > 1 an integer-valued function m = m~ (n) such that 

(4.9) a.+../a. --~ a. 

The subsequence u.+,. (a.+..x) can be presented in the form 

u.+,. (a.+,.x) = [p(n)/p(n + m)l"2u. (a°+,.x) + q~. (x), (4.10) 

where 

q~.(x)= ~ E ( a , + , , x ) + p ( n + m ) - p ( n ) - m  X / p i n + m )  
i = n + l  

is a non-decreasing function. By (4.9), when n ~ ~ we have (1.12) and we obtain 

from (4.10) the inequality (4.5), where q~ (x) is the limit of ~o, (x). 

Our argument implies 

THEOREM 4.2. H belongs to S + if and only if H(e x) belongs to S*. 

COROLLARY 4.1. The class S+ is a proper subset of S*. 

PROOF. If H = qb(u) belongs to S t, then by Theorem 4.2, ¢b(u(eX)) belongs 

to S* and therefore u (e ~) is a concave function. Hence, since e x is convex, u (x) 
must be concave and consequently H = ~ (u )  belongs to S*. Obviously, also S* 

belongs to S*, since S* is closed under translations. 

Although S + is not closed under titanslations, the following proposition is 
valid: 

THEOREM 4.3. If H belongs to S +, then.for any b > 0 also H(x - b) belongs to 
S +" 

PROOF. We have to show that if the ~f u satisfies condition (4.5), then for any 

a > 1 and b > 0  the difference u(x - b ) -  u(ax - b) is also a non-decreasing 

function. Indeed, let us assume that for some bl > 0, al > 1, y~ > x~ > _u + b~ > 0 

we have 

(4.11) u (y~-  b~)- u ( a t y l -  bt) < U(Xl- b~)- u(a~x~- b~). 

By (4.5), for any a > 1 
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u(y, - b~)- u(ay~ - abt) >= u(xt - b~)- u(ax~ - abe). 

In particular, for a = (a~yl - b~)/(y~ - b~) > 1 we obtain from the last inequality 

that 

(4.12) u (y~-  b~)-  u ( t ~ y ~ -  bO > u (x~ -  b~)- u[(x~-  b~)(ot~yl- b~)/(y~- b0]. 

But it is easy to verify that 

a l x t -  b~ > (x~ - b~)(a~y~ - b~)/(y~ - b~). 

Thus from (4.12) we obtain 

u ( y l -  b~)- u ( a~y t -  bl)>= u (x~ -  b~)- u ( a ~ x l -  b~), 

which contradicts assumption (4.11). 

Finally, let us point out that H ~ S + and /4 > 0  does not imply that also 

H ( H  + x ) E  S ÷. Indeed, let us consider for example the df H = q>(u), where 

-oo  if x < 1 ,  
u ( x )  [ logx i f x > l ;  

obviously, H E S ÷, but H(x  + 1) does not belong to S ÷, since 

[log(e x + 1)]" > 0. 

This phenomenon can be explained by the fact that if H E S ÷ and _/-/= 0, then as 

we have seen necessarily H(0  + ) = 0. On the other hand, if H E S ÷, then for any 

h (_/2/< h < / 4 )  the df 

/ : / ( x ) = I  0 i f x < h ,  

[ H ( x )  i f x > h ,  

also belongs to S ÷. 

4.2. The classes S- and S-  

THEOaEM 4.4. The df  H belongs to S-  if and only if it has the form (1.13), 

where u is a proper sf, having the following properties: ~ = O, and for every 
0 < a < 1 the difference (4.5) is a non-decreasing function in (u, 0). 

PROOF. Sufficiency. It follows from (4.5) that fi = 0. Indeed, assuming a < 0, 
let 

_ u < ~ < n <  -X/a! i ,  r l l ~ < a < a l ' o < l .  



VOl. 37, 1987 EXTREME VALUE LIMIT LAWS 17 

Then we have y < ~ < a~ < 7 /<  ~ < a t / <  0 and consequently q~o (~) > ~oo (~/) = 

- ~ ,  which is impossible. Denote  

v(x) = u ( -  e-X). 

If we replace x by - e -~ in (4.5) and set a = e -°, we find that v(x) is a concave 

function, since the difference v ( x ) - v ( x  +13) does not decrease. We have 

v( - oo) = u( - oo) = - ~ and v( + ~) = u(0 - ). Using Theorem 3.1 if u(0 - ) = % 

and Theorem 3.2 if ( u 0 - ) < o %  we can affirm the existence of a triple 

{F,, b,,p(n)}, which satisfies relations (4.7}-(4.8), where b, ---~. Now we replace 

the variable x in (4.7}-(4.8) by - l o g ( - x ) ,  we set b, = - l o g  a, and define 

F~ = E ( - l o g ( -  x)). Then we obtain (4.1), (4.2) and (4.4), and we conclude that 

H = ~ ( u )  belongs to S-. 

Necessity. By Remark 2.3 we have (2.4). Since a, ~ 0, there exists for every 

0 < a  < 1 an integer-valued function m = rn~(n)such that we have (4.9). We 

obtain the necessity of (4.5) by the same argument as in the proof of Theorem 

4.1. 

We have seen above that if H belongs to S , t h e n / 4  = 0. Hence, H belongs to 

S- if and only if /~<oo  and the df H ( / 4 +  x) belongs to S-. Thus, by the 

argument of the proof of Theorem 4.4 we conclude 

THEOREM 4.5. The df H belongs to S- if and only if ff-I < oo and H has the form 
(1.13), where u ( H - e  -x) is a concave function. 

In contrast to the class S +, the class S contains df's H(x), which are 

discontinuous at the point /4. So, for example, the sf 

u ( x ) - - { ~  if x < 0 ,  

if x > 0 ,  

satisfies the conditions, which are required in Theorem 4.4 and, therefore, the df 

H ( x )  = 

belongs to the class S-. 

"~(x)  if x < 0 ,  

1 if x > 0 ,  

Similarly to Theorem 4.2, the following proposition is valid: 

THEOREM 4.6. A df H, which is continuous at H, belongs to S- if and only if 
H ( -  e -x) belongs to S*. 
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5. Auxiliary propositions 

LEMMA 5.1. Let relations (1.6) and (2.2) hold, where u is a proper sf. Then: 
(1) The partial limits of the sequence {b,/a,} must be outside the open interval 

( - a , - u _ ) .  
(2) I f  in addition, y < 0 ,  then for each subsequence n' such that b~,---~b 

([ b I < ~) necessarily a,.---~ O. 

PROOF. (1) Let us assume, for instance, that for some subsequence n' 

b.,/ a.,--* /3, - a < / 3 < - _ u .  

Then 

(5.1) 

and for every i and x > u 

u,,(a,,x +/3a,,)---* u(x) 

F, (a.,x +/3a. , )~  1. 

In particular, since y < - / 3  < fi, then for every i 

(5.2) F, (0) = 1. 

Let ~ ( - / 3  < £ < fi) be any continuity point of u(x). Then by (5.1) 

u.,(a..~ + a.,/3)--, u(~). 

On the other hand, since s c +/3 >O, by (5.2) for every i 

F~ (a.,¢ + a,,/3) = 1 

and therefore 

u,,(a,,!~ + a,,/3 ) = X/p(n') ---~°°, 

which is impossible, since ~ < ~. 

(2) Assuming a.,---* a, 0 < a < 0% we obtain 

u.,(ax + b)--* u(x) 

and for every i and x > u, F~ (ax + b) = 1. Therefore 

u.,(ax + b) = X/p(n')---,oo 

f o  any x > y, which is impossible since u is a proper  sf. 

If we assume a, , - --~,  then for every x ( _ u < x < 0 )  we 

E (a,,x + b,,)---~O, which contradicts (1.6). 

shall have 
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LEMMA 5.2. Let relations (1.6), (1.10) and (2.2) hold, where u is a proper sf 

and let 

(5.3) _u < 0 =< a. 

Then there exists a non-decreasing sequence {/3.} such that also 

u. (a.x +/3.)--+ u(x). 

shall prove that for every integer-valued function 

(5.4) 

PROOF. First we 

m = re(n)-->_ 1 

(5.5) liminf(b.+m - b,)/a, ~0 .  

The assumptions of our Lemma hold for any subsequence. Therefore,  in order to 

simplify the notation, it is enough to prove the impossibility of 

(b.+,. -b.)/a.---~/3, a,+.,/a.--+a, 

where -m__</3 < 0 ,  0 -  < a <_-m. 

Assuming/3 = - m ,  for any M > 0 

b.+,. < - M a .  +b . .  

Hence, by the monotonicity of u. (x) and condition (1.10) (see Remark 2.6), 

u.+,.(b.+,,)-< u .+, , ( -  Ma, + b . ) =  u . ( -  Ma, + b,). 

By n --+ m we obtain u (0 - ) <_- u ( - m) = - m, with contradicts assumption (5.3). 

Let - 0 0 < / 3  <0 .  Due to (1.10) 

(5.6) u.+,.(a,+,.x + b.+,.)<= u. a. ', a. a. / " 

For a = 0 we conclude that u(x)=< u(/3 + )  for every x, which again con- 

tradicts (5.3), since /3 < 0. 

For a = oo obtain from (5.6) u(x) -<  u ( - o o ) = -  oo for each x < 0. Hence 

_u -> 0, which is impossible. 

Finally, the assumption 0 < a < oo implies 

(5.7) u(x) <= u( x +/3). 

If 0 < a < 1, then by iteration of the above inequality we have for every n 

u(x)-< u(o,"x +/3(1 + + - - - +  

Hence, as n--+oo we obtain for every x 



20 D. MEJZLER Isr. J. Math. 

u(x ) <= u(/3/(1 - )), 

which is imlaossible since /3/(1 - a )  < 0 and ~ _>- 0. 

Similarly, if a > 1, then we rewri te  (5.7) as 

II = U  X 

and by i terat ion we obta in  for  every  x 

u(x ) >- u ( - / 3 / ( 1  - a ) ) ,  

which is again impossible  since - / 3 / ( 1  - a )  > 0 and u < 0. 

Obvious ly ,  a = 1 is impossible  since u(x)  is an sf. 

Thus  we p roved  (5.5), which implies that  lim inf b, > - ~ .  

Now,  let us define a sequence  {/3.} by 

/3,, = inf(b,,, b.+t . . . .  ), n = 1 , 2 , . . . .  

Obvious ly  /3. <= b,, and /3. =</3,,+~. 

In order  to p rove  (5.4) we have  to show that  

(b° - / 3 . ) / a °  

Indeed ,  if for some subsequence  n '  and some e > 0 we have  

(b . , -  /3.,)la°, > e, 

then for  every  n '  there  exists a m o n g  the te rms  of the reduced  sequence  {b.,.k} 

(k = 1,2 . . . .  ) a t e rm b. +,., such that  (b . , -  b.,+m.)/a., > e > 0 ,  which contradic ts  

(5.5). 

COROLLARY 5.1. Under the conditions of Lemma 5.2 there exists a sequence of 

df 's  {]~,.(x)} and a numerical sequence {/~.} such that 

(5.8) 

and either 

(5.9) 

or 

(5.10) 

/~. --> ~,  lira inf( /~. /a . )  >= - u  

/~, ---> 0, a .  --> 0, lim sup( /~ . /a . )  =< - ~. 
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PROOF. It follows from Lemma 5.2 that the initial {b,} may be replaced by a 

non-decreasing sequence {/3,}. Let /3,--~ b, then b > -oo. 
If b = o % w e p u t  

bo =/3°, P° (x) = i~, (x) 

and the inequality (5.9) follows from the condition (5.3) and Lemma 5.1 (1). 

If lb]<o% then we put 

/~, =/3, - b, F . ( x ) = F , ( x + b )  

and we obtain (5.10) by Lemma 5.1 (2). 

6. The proof of Theorem 1.1 

Taking into account Theorems 3.1 and 4.5 and Corollary 4.1, it is enough to 

show that the class S is the union of S* and S-. 

Let H be a df in S. Without loss of generality we may assume that 

(6.1) _ H < 0 < / 4 .  

By Theorem 2.1 H must be of the form (1.13), where u is a proper sf, which can 

be a limit in (2.2), where u. is given by (1.8). By (6.1) the sf u satisfies condition 

(5.3). Due to Definition 1.1 and Corollary 5.1 we may assume that the numerical 

sequences {a,, b,} satisfy condition (5.8) and either (5.9) or (5.10). 

1. Let (5.8) and (5.9) hold. We shall prove that in this case H must belong to 

S* .  

Let 13 > 0 be any number and let us consider the sets of integers k 

(6.2) E, (/3) ={k:  (b,+k-,-  b,)/a,  <-_/3}, 

which are obviously non-empty and bounded, since b.--~ ~. 

For the given /3 we define an integer-valued function m = ms(n  ) by 

(6.3) m = max E. (/3). 

Thus, from some n on we have 

(6.4) /3 < (b.+,. - b.)/a.  <-/3 + 

i.e., 

(6.5) 

b . + r a  - -  b t t + r n - - I  . an+m 
) 

a.+., an 

/3a,,/a.+,. < (b.+,. - b. )]a.+,. <=/3a./a,,+,. + (b,, +,,, - b. +,._t)/a.+,.. 
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Our assumptions imply 

(6.6) lira sup a,+, . /a ,  < oz. 

Indeed, if for some subsequence n',  m ' =  m(n ' ) ,  

(6.7) a.,+,,,/a,,--> 0% 

then by (6.5) (b,,+,,,-b,,)/a,,+,.,--->O and consequently 

(6.8) u,,+,,,(a.,+,,,x + b,,)---> u(x ) .  

On the other hand, by (6.7), for any continuity points of u M < e < 0 ,  we 

have from some b' on a.,+m, e < a,,M. Hence, by (1.10) 

Un,+m,(a,,+,,,e + b,,) <= u , , (a , ,M + b,,) 

and consequently, in view of (6.8), u ( e )  <- u ( M ) .  

By e ~ 0, M ~ - ~ we obtain u ( 0 - )  = - 2 which contradicts condition 

(5.3). Thus we have proved (6.6), and by (2.4) and (6.4) we get that 

(6.9) (b,+m - b, )/ a, --> 18. 

LEMMA 6.1. Let  {a. > 0, b,} be numerical  sequences. I f  b, --->oo and for some 

integer-valued function m = re(n)>= 1 we have (6.9), where 18 > 0 ,  then 

(6.10) limsup a.+,, / a, >-_ 1. 

PROOF. Let us assume that from some N1 on 

(6.11) a,+m/a, < q < 1. 

Let b > 18. Then by (6.9) from some N2 on 

(6.12) (b.+,, - b . ) /a ,  < b. 

Let no = max(N,, N2), ns = n,_, + m(n,-l), s = 1,2 . . . . .  Since m(n)>= 1, {ns} is an 

infinite sequence of integers such that 

b , , - b  .... < b a  . . . . .  a , J a  .... < q < l .  

Hence, for any k 

k k 

(6.13) b ,~-  b,,, = Z ( b , , -  b,. ,) < b Z a .... < ba ,,, ~'~ q~ ' < ba ,J(1 - q), 
s = l  s = I  s = l  

which contradicts our assumption that b,---.0o. Thus we have proved (6.10). 
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The expression of U.+,,.(a.+mX + b,+m) can be rewritten in the form 

(6.14) u,+m(a . . . .  x +b,+m)=[p(n)/p(n+rn)] '2u, ,(a,+mx +b,+.,)+q~,,(x), 

where 

q~.(x)=[,=.+ F~(a,+,.x + b . + m ) + p ( n + m ) - p ( n ) - m ] / ~ / p ( n + m )  

is a non-decreasing function. By (6.6) and (6.10) there exists a subsequen¢e n' 

such that 

Cl.,+,.,/ an,---~ Ol~ 

where 1 =< a < ~. Passing to the limit in (6.14) over n' and taking into account 

(6.9) and (1.12) we conclude that the sf u must satisfy the following condition: for 

every /3 > 0  there exists an o~ = a ( / 3 ) =  > 1 such that the difference 

(6.15) ~0~ (x) = u(x)  - u(ax +/3) 

is a non-decreasing function. Thus it remains to prove that we may take 

c~ = a(/3) = 1. 

LEMMA 6.2. If the sf u satisfies condition (6.15), then for any ~ > u this 
condition is also sati,~fied by fi(x) = u(x + ~). 

PROOF. Let us denote /~. = b, + a,s c. Then 

u, (a,x + b,)---~ fi(x). 

It follows from our previous argument that it is enough to show that 

(b,+~- b, )/a, --~ 0 and/~, ~ ~. The first relation follows instantly from (2.4). For 

the second relation it is enough to consider the case when the sequence {an } is 

unbounded and y < ~ < 0. But by (5.9) 

liminf b, /a ,  >= - y + ~ > 0 ,  

which proves that b , - - -~  also in the case when {a,} is unbounded. Thus the 

Lemma is proved. 

Now, let us return to the relation (6.15). If a -> 1, xt < 0 < y[, then o~x, +/3 =< 

xt +/3, ay~ +/3 > y~ +/3. Therefore 

u(x,)- u(x, +/3) <= u(x,)- u(,,x, +/3) <= u(y,)-  u(,~y, +/3) <_- u(y,)-  u(y~ +/3), 

i.e. 
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(6.16) u(xl) - u(x~ + [3) ~- u(y~) - u(y~ + [3). 

If x~ < Yt < 0  or 0 <  x~ < y~, then we consider the sf fi(x) = u(x + ~), where ~, 

x~ < ~ < y~, is any number. By Lemma 6.2, also the sf fi(x) has property (6.15), 

with & = &(fl)_-> 1, and we may take & = &([3)--1, if x < 0 <  y. Let us take 

x = x~-/5, y = Y~- ~:, 

then x < 0 < y and consequently 

f i ( x ) -  fi(x + [3) =< f i ( y ) -  fi(y +/3), 

i.e., (6.16). 
Thus we have proved that for any x < y we can put a = 1 in (6.15). Hence, by 

Theorem 3.1, H = CD(u) must belong to S*. 

2. Let (5.8) and (5.10) hold, where t~ = ~, i.e., 

(6.17) b./a. 

We shall prove that in this case H = ~ (u )  belongs again to S*. 

We consider again the sets (6.2). By (6.17), for any [3 > 0 we have from some N 

on - b ~ / a ,  > [3. Hence, for n > N the sets E,  (/3) are bounded. We define the 

integer-valued function m = ms(n)  by (6.3) (for n <= N we can put r e ( n ) =  1). 

Thus using the same argument as in the previous case, we obtain relation (6.9). 

Now we need the following 

LEMMA 6.3. Let {a, > 0 ,  b.} be numerical sequences. If b,--)O and (6.17) 

hold, and for some m = m ( n ) > l  we have (6.9), then also (6.10). 

PROOF. Let us assume that from some N~ on we have (6.11) and (6.12). By 

(6.17) we have from some N2 on 

2b 
(6.18) b . / a .  < - l -q 

Now, considering the subsequence { ns}, defined in the proof of Lemma 6.1, we 

obtain the inequality (6.13). Hence, by (6.18) 

b.da,o < b,o/a,o+ bt(1 - q ) <  - bl(1 - q ) <  0, 

which is impossible, since b,~--~0. Thus we proved (6d0). 

Using the above Lemma, we conclude the necessity of (6.15). Under the 

conditions of this case, for any ~ the sf fi(x) = u(x + ~) also has property (6.15), 

which by the argument of the previous case enables us to take a = 1 in (6.15). 
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3. Finally, let (5.8) and (5.10) hold, where  fi < oc. Let  

- o o <  b = l i m s u p  b , / a ,  < - ~. 

We shall show that  in the present  case H = ~ ( u )  belongs to S-.  

First we will prove  that  u has the following proper ty :  for  every  a (0 < a < 1), 

there  exists a /3 =/3(cQ->_ 0 such that  the difference 

(6.19) q~ (x)  = u ( x ) -  u ( a x  +/3)  

is a non-decreasing funct ion and 

(6.20) a =</3/(1 - a ) _ -  < - b. 

Le t  0 < a < 1 be any number .  Since in the present  case a, ~ 0, by (2.4) there  

exists an integer-valued funct ion m = m~ (n)  such that 

(6.21) a,+,, / a, ---} a. 

Let  n '  be such a subsequence that 

b.,/ a,,--~ b. 

Then  by (6.21) 

0 -<_ lira inf(b,,+,,, - b,,)/a,, <= lim sup(b. ,+, . , -  b,,)/a,, <- - b(1 - c~). 

Hence  we may assume that  

(6.22) (b,,÷,,,,- b.,)/a,,---~/3, 0 <-/3 <= - b(1 - a ) .  

Using the representa t ion  (6.14), on account  of (6.21), (6.22) and (1.12) we obtain 

relat ion (6.19), where  by (1.10) we have (5.7). By iterating n times the 

substi tut ion of a x + / 3  for  x in (5.7), as n---~oo we conclude that  u(x)<= 

u(/3/(1 - a ) )  for  any x. Thus  a -<_/3/(1 - a )  and by (6.22) we obtain (6.20). 

Now, let {a.} be any sequence  such that  

(6.23) a .  ~ 1, 0 < a ,  < 1 

and let 13, = 13 ( a . )  be the corresponding sequence  such that  

(6.24) q~. ( x ) =  u ( x ) - u ( a . x  +/3 , )  

is a non-decreasing function. By (6.20) we may assume 

(6.25) 13. ~ 0, /3./(1 - a ,  ) ~ - Oo, 

where  fi ___- - bo <-- - b. 
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The sequences {a,,/3,} given by (6.23) and (6.25) should be considered fixed in 

the sequel. Let us put in (6.24) x +/3,/(1 - a , )  instead of x. Then we obtain 

u ( x  + / 3 . / ( 1  - a . ) )  - u ( a . x  + / 3 . / ( 1  - a . ) )  = ¢ .  ( x  + / 3 . / ( 1  - or . ) ) .  

Hence, repeating (s - 1) times the substitution of a,x for x and then summing, 

we obtain 

(6.26) 

where 

(6.27) 

u(x + / 3 o / ( 1 - o , o ) ) -  u(~;x  +/3 . / (1  - o,.)) = ,po.~ (x),  

s - I  

,D..s(x) = E q~.(,~.x + / 3 o / ( 1 - o , . ) )  
,k=0 

is a non-decreasing function for any integers n and s. 

Now, for a given a (0 < a < 1) let us take in (6.26) the integer-valued function 

s = s ( n )  = so ( n )  = [ log c~/log or.]. 

We have a ~(°~ ~ a. Therefore, passing to the limit in (6.26) by n ~ o~ we obtain 

u(x - b o ) -  u(~x - bo) = ,¢o (x ), 

where q~(x) is the limit of the expression (6.27). Obviously, q~(x) is a 

non-decreasing function. 

Thus we have proved that the df ~ ( u ( x  - b(,)) belongs to S-. Hence , /~  = - b(~ 

and h =  O(u) belongs to ,~-. 

This completes the proof. 
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